
Everything is Possible to Structure – Even the
Software Engineering Body of Knowledge

Mira Kajko-Mattsson, Anders Sjögren, Leif Lindbäck
School of Information and Communication Technology

KTH Royal Institute of Technology
Stockholm, Sweden

mekm2@kth.se, as@kth.se, leifl@kth.se

Abstract—Everything is possible to structure, even the software
engineering body of knowledge. In this paper, we suggest a
conceptual model of the software engineering body of
knowledge. The model is a restructured version of SWEBOK
and ACM/IEEE Curriculum Guidelines. It constitutes the first
attempt to create an underlying structure that is common to
most of the software engineering bodies of knowledge.

Keywords-conceptual model of the software engineering body
of knowledge; SWEBOK, knowledge areas; knowledge subareas.

I. INTRODUCTION
Development of a software engineering body of

knowledge is a formidable undertaking [2][3]. It has to meet
the challenge of rapidly changing landscape of software
engineering [2] and the challenge of accommodating to the
diversity of the current and new emerging domains that
strongly rely on software engineering [2][3]. Such a body of
knowledge should guide in developing software engineering
curricula. It should constitute a basis for evaluating the
knowledge and skills of software graduates and professionals
and it should provide a roadmap for following up their
lifelong progression [6]. This requires a solid structure of the
software engineering body of knowledge that stands the test
of time [6].

Today, there are few bodies of software engineering
knowledge [3]. The most known one is SWEBOK - Guide to
the Software Engineering Body of Knowledge [4]. Its
objective is to provide foundation for curriculum
development. It has been used as a foundation for developing
ACM/IEEE Curriculum Guidelines for Undergraduate
Degree Programs in Software Engineering [1].

Both SWEBOK and ACM/IEEE Curriculum have for
many years been developed and revised by many highly
skilled professionals. Hence, they constitute a good roadmap
of software engineering skills and knowledge. Despite this,
we have identified a number of problems when evaluating
TIDAB - an undergraduate Programme in Computer
Engineering at KTH Royal Institute of technology [9]. We
have found that none of the documents, neither SWEBOK
nor ACM/IEEE Curriculum, have a common underlying
structure of presenting their contents.

In this paper, we present the problems that we have
encountered while evaluating the TIDAB programme and we

Figure 1. Design of SWEBOK and ACM/IEEE Curriculum

suggest a conceptual model of the software engineering body
of knowledge. Our goal is to provide a model enabling a
coherent, stable, viable and structured description of
software engineering knowledge. Because software
engineering is still evolving, it is important, to have a good
and structured organization of its body of knowledge so that
it can be easy to analyze and evolve, and still, stand the test
of time [2].

 The remainder of this paper is as follows. Section II
briefly presents some of the problems with SWEBOK and
ACM Curriculum. Section III presents the conceptual model
of the software engineering body of knowledge. Section IV
evaluates the two standards studied. Finally, Section V
makes suggestions for future work.

II. STANDARDS STUDIED AND THEIR PROBLEMS
Both SWEBOK and ACM/IEEE Curriculum include

software engineering bodies of knowledge. However, both
are differently wrapped and have different goals. SWEBOK
provides guidance to software engineering professionals

2017 IEEE/ACM 1st International Workshop on Software Engineering Curricula for Millennials (SECM)

978-1-5386-2795-2/17 $31.00 © 2017 IEEE

DOI 10.1109/SECM.2017.5

61

Figure 2. ACM/IEEE Curriculum’s way of structuring knowledge areas

about what they should know during their lifelong career. Its
overall outline is presented in the upper part of Figure 1.
ACM/IEEE Curriculum, on the other hand, is based on the
contents of SWEBOK and it provides guidance to academic
institutions and accreditation agencies about what should
constitute an undergraduate software engineering education.

The two pieces of work were originally developed by a
broad, international group of highly skilled volunteer
participants. Hence, the two works are of a very high quality
contents-wise. Despite this, while evaluating the TIDAB
programme, we have encountered some problems. These
concern (1) lack of a common underlying structure for each
knowledge area, (2) strange division into knowledge areas,
and (3) difficulties in evaluating whether a specific Body of
Knowledge (BoK) item has been fulfilled. Due to space
restrictions, we only provide few examples of problems.

Regarding the first problem, we have found that the
knowledge areas, be it SWEBOK or ACM/IEEE
Curriculum, lack a common underlying structure. By
studying Figure 2, we may see that the structure of the
Requirements BoK is different than the structure of the
Design BoK. Why does the Design BoK have concepts and
the Requirements BoK does not and why does the
Requirements BoK have process and the Design BoK does
not? These are some of the questions. Similar problems have
been identified in SWEBOK. To be fair to SWEBOK,
however, there are some common structural elements
defined in some of knowledge areas (not all) such as, for
instance, Fundamentals and Tools.

We believe that all or at least the majority of the
knowledge areas should have a common underlying
structure. We do not know how to interpret lack of the
underlying structure in the two standards studied. What we
know is that the software engineering knowledge areas differ
much with respect to their contents and the depth of
coverage. The standards were authored by separate volunteer
groups that focused on different knowledge areas. Probably,
the authors were not able to reach a common consensus that
would result in a common structure.

Regarding the second problem, we do not understand
why ACM/IEEE Curriculum distinguishes security and puts
it on the same level as other knowledge areas. By studying
the lower part of Figure 1, we may see that Security is not
part of software quality. Instead, it is put on the same level as

Quality. As far as we understand, the standard treats Security
as a highly functional knowledge area. This may however
confuse many readers.

Finally, the third problem deals with difficulties with
evaluating educational programmes. The individual BoKs in
the two documents do not offer any one-to-one relationship
for ticking off whether a particular BoK has been fulfilled.
Let us exemplify this with ACM/IEEE Curriculum’s BoK –
REQ.rfd.10 stating Requirements management (e.g.,
consistency management, release planning, and reuse). If the
educational programme includes release planning but not
consistency management, then how can you evaluate that
requirement management has been fulfilled. Similar
problems have been found in SWEBOK. As an example,
how do you evaluate REQ 2.4 stating Process Quality and
Improvement, when only process quality gets implemented
in the educational programme.

III. CONCEPTUAL MODEL OF THE SOFTWARE
ENGINEERING BODY OF KNOWLEDGE

The conceptual model of the software engineering body
of knowledge as presented in this section is the result of a
KTH project whose goal was to evaluate the software
engineering part of the TIDAB undergraduate programme
[9]. Initially, we - the project members, that is, the authors of
this paper, had the ambition to use ACM/IEEE Curriculum.
After having tried to map TIDAB on the curriculum, the
group realized that it was not easy. Hence, we chose
SWEBOK to study and analyzed whether it might be useful
for TIDAB. We found SWEBOK very comprehensive,
however, we felt that it was not easy to match it against
TIDAB either. For this reason, we decided to create our own
model.

Our model consists of five groups of knowledge areas.
These are presented in Figures 3-5 in various guises. To
facilitate their identification, we have used numerical
identifiers. The models knowledge areas are the following:
1. Overall Management Knowledge Area: This area

includes BoKs that are necessary for managing the
software organizations on a very high level. As shown in
Figure 5, it deals with fundamentals related to the
overall management, software organization, its business,
people management, strategic management of

62

Figure 3. Our suggestion for structuring software engineering body of knowledge

software systems, and the management of organizational
standards and technologies.

2. Overall Software System: This area includes BoKs that
are necessary for managing the software system as a
whole during its entire lifecycle.

3. Software System Knowledge Subareas: Here, we include
all the knowledge subareas that are necessary for
managing various parts of software system within
various stages and/or processes. In our model, the
knowledge subareas are (1) Requirements, (2) Design,
(3) Implementation, (4) Testing, (5) Project, (6)
Evolution and Maintenance, and (7) Versions and
Configurations.

4. Competencies Knowledge Areas: This area identifies all
the competencies and skills that a software professional
should possess. As shown in Figure 4, these include
personal abilities, software engineering related
competencies, business related competencies and
technology related competencies.

5. Tool Knowledge Area: This area includes knowledge
about tools to be used throughout the software lifecycle.

By studying Figure 4, the astute reader might have
noticed that Overall Software System Area and Software
System Subareas follow a uniform underlying structure.
Before explaining it, however, we would like to come back
to Figure 3 and kindly ask the reader to study knowledge
areas 2A – 2B and 3.1.A/3.1.B – 3.7.A/3.7.B. As can be seen
there, the two knowledge areas are divided into two parts: (1)
part dealing with knowledge about a software system or
knowledge about a particular knowledge subarea and (2) part
dealing with the knowledge about how to manage the
knowledge area or subarea.

When defining the structure for Overall Software System
Area and Software System Subareas, we follow the rules
from object-orientation where each object encapsulates data
describing the object properties and defines methods
required for managing the object’s data. In this way, we
distinguish between the knowledge about a specific area
from the knowledge about how to manage the specific area.

We believe that it is very important to distinguish between
those two pieces of knowledge. This may be motivated with
the Requirements Knowledge Subarea. You may know what
requirement are and how they are structured, however, you
may not know how to manage requirements during various
lifecycle phases.

The overall structure of Overall Software System Area
and Software System Subareas is presented in Subfigures 2A,
2B, 3A and 3B in Figure 4 and exemplified with the
Requirements subarea in Figure 5. The astute reader might
have noticed that they have a common underlying structure.
Below, we are going to describe it. To facilitate the
understanding, we kindly ask the reader to follow the
structure in Figure 4 and its exemplification on Requirements
Knowledge Subarea in Figure 5.

Regarding the knowledge about software system area and
software system subareas, the structure includes:
• Fundamentals comprising definition, things to know and

to do within the knowledge area or subarea and
descriptions of the area’s properties. The description, in
turn, consists of two parts: (1) descriptions of general
properties and (2) descriptions of the quality of a
specific knowledge area. Examples of fundamentals for
Requirements Subarea are presented on the left handside
of Figure 5.

• Types of Knowledge Area/Subarea listing the types of
knowledge area. In case of requirements in Figure 5, we
have functional, non-functional, emergent requirements
and the like.

• Levels of Knowledge Area/Subarea identifying levels
that are specific for a particular area. In case of
requirements, we have user requirements, system
requirements, software requirements, requirements items
and the like.

• Documentation of the Knowledge Area/Subarea listing
what needs to be documented, identifying
documentation formality, audience and providing
documentation templates.

63

Figure 4. Our suggestion for structuring software engineering knowledge areas

64

Figure 5. Exemplifying Requirements Knowledge Subarea using our model and mapping it onto SWEBOK and ACM/IEEE

Curriculum. P stands for partially, I stands for implicitly and minus stands for absence

Regarding the knowledge about the management of
software system area and software system subareas, the
structure includes:
• Fundamentals comprising definition, and descriptions of

the management of the area/subarea. The description, in
turn, consists of two parts: (1) descriptions of the
general management properties and (2) descriptions of
the quality of managing a specific knowledge area.
Examples of fundamentals are presented on the right
handside of Figure 5.

• Approaches/Strategies for managing the knowledge
area/subarea. As shown in Figure 5, requirements may
be managed upfront or iteratively.

• Process listing all the processes that are relevant for
managing the knowledge area. In case of requirements,
we have processes like requirements gathering, analysis,
negotiation, prioritization, reuse, and the like.
• Process quality management identifying the
processes for managing the quality of the area/subarea.
On purpose, we have distinguished quality management

65

Figure 6. Illustrating usage of our model

processes as a separate BoK from the processes for
managing the specific area/subarea. We motivate this
with the fact that the management of the quality of the
requirements gathering process is not the same as the
requirements gathering process. Here, we identify two
groups of quality management processes (1)
management of the quality of the software system
area/subarea and (2) management of the quality of the
management of the software system area/subarea. As
shown in Figure 5, the first group focuses on evaluating
and measuring the quality of requirements whereas the
second group focuses on evaluating and measuring the
quality of the processes used for managing
requirements. These are two separate things. You may
have a high quality process but you may have a low
quality software system or vice versa.

• Actors identifying all the roles that take part within a
particular area or subarea. In case of requirements, we
have business managers, business analysts, customers
and the like.

Regarding the structure of the remaining knowledge
areas, they are for now slightly different. However, they
follow the common template as much as possible. Below, we
motivate their underlying structures.
• The Competencies knowledge area lists the knowledge

and skills that students must possess. It does not include
the management of students’ competencies. If we
included it, it would rather deal with how universities
develop and manage the students’ competencies. From
the curriculum perspective, it is not relevant. The
management of people as software professionals,
however, is included in the Overall Management
Knowledge Area (see (1) in Figure 3 and 4).

• The Tools knowledge area does not include the
management part, not yet. We believe that the
educational programmes will have difficulties in
teaching how to manage tools. We are however open for
changes in the future.

• Overall Management Knowledge Area only lists the
strategic elements required for managing organizations,
businesses, people and the like. This knowledge is
required, however, on a very general level. In reality,
other non-software professional roles will possess this
knowledge. For software engineering graduate students,
it is enough that they are acquainted with the very
basics. We are however open for evolving this part in
the future, if protests from the software engineering
community arise.

IV. OUR MODEL VS SWEBOK AND ACM/IEEE
CURRICULUM

Our conceptual model of the software engineering body
of knowledge has been mapped onto the BoKs of SWEBOK
and ACM/IEEE Curriculum. The model and its mapping has
resulted in almost 100 page document. Due to space
restrictions, we cannot present it herein. However, we have
succeeded to present part of our model, the part dealing with
Requirements Knowledge Subarea which we then have
mapped onto the two standards.

As can be seen in Figure 5, many of the items within the
Requirements Knowledge Subarea have not been
implemented by SWEBOK and ACM/IEEE Curriculum.
There are also areas that are totally missing in the two
standards. These are Overall Management Knowledge Area
(Area 1 in Figure 3) and Software System Area (Area 2A and
2B in Figure 3). It seems that both standards are more
focused on the knowledge subareas and have not put enough
effort on the overall management of the software
organizations, their businesses and people and the holistic
management of a software system.

Right now, we are in the process of further detailing our
model. Our goal is to achieve a basis for a one-to-one
mapping of the BoKs onto educational programmes and
curricula. For instance, Requirements Analysis listed on the
right handside of Figure 5 needs to be more granular. Each
BoK such as formal/informal requirements analysis,
requirements interaction analysis, requirements trade-off

66

analysis, impact analysis requires a separate field and
attention in its own right. Only in this way, we may see
which part of the requirements analysis has been offered by
an educational programme.

Even if the model is going to be further detailed in the
future, we have found it very easy to use when evaluating the
TIDAB programme. It took us much time to develop the
model, however, when finally being ready with the model, it
took us almost no time at all to evaluate our educational
programme.

V. FINAL REMARKS
In this paper, we have pointed out some of the problems

when using SWEBOK and ACM/IEEE Curriculum while
evaluating KTH TIDAB undergraduate programme
[1][7][9]. The problems deal with lack of an underlying
common structure in the two standards and difficulties in
determining whether particular BoKs have been fulfilled.
This has forced us to create our own model that will provide
a basis for defining a curriculum for the TIDAB programme
[9].

We believe that our model is useful in many contexts.
By enabling a one-to-one mapping of the BoKs onto the
curricula, it may help many actors. As illustrated in Figure
6, our model is useful for students for finding out how much
they are progressing during their studies and for mapping
out their knowledge after having graduated. It is useful for
software professionals for finding out how much their
competencies and skills progress during their lifelong
profession.

Universities would use the structured body of
knowledge for defining their curricula and for specifying
which BoKs and in what depth of knowledge are important
for particular undergraduate programmes. Graduate
diplomas could include attachments of all the BoKs that
students have learned during their studies. This would
facilitate the employment process.

Companies often complain that graduate students
possess too little knowledge within software engineering.
When employing graduates, they have difficulties in finding
out the level and depth of the applicants’ software
engineering competence [5][6]. A document specifying in
detail depth the knowledge of the applicants would

substantially help them in finding and employing
individuals with the right competencies and skills.

Right now, our model is still under development and it
needs be validated. We however strongly believe in it and we
claim that it is possible to find a uniform underlying structure
for most of the software engineering bodies of knowledge.
For this reason, as a next step, we invite the software
community to join us, further improve the model and
complement it with a system for grading the depth of
software engineering knowledge. Only in this way, we will
have insight into what a specific individual knows or does
not know and how s-he should evolve his/her knowledge.
We will also be able to compare various programmes on an
international level and employers will be better informed
about whom they employ.

REFERENCES
[1] ACM/IEEE, “Software Engineering 2014, Curriculum Guidelines for

Undergraduate Degree Programs in Software Engineering”, 2014,
https://www.acm.org/education/se2014.pdf, retrieved on Jan 28,
2017.

[2] T. Hilburn and D Bagert, “A Software Engineering Curriculum
Model”, Proc. Frontiers in Education Conference (FIE 99), IEEE,
Nov. 1999, vol. 1, pp. 12A4/6-12A411, doi:
10.1109/FIE.1999.839269.

[3] G. Hislop, et.al., “Work in Progress - Problems and Progress in
Software Engineering Curriculum Materials”, Proc. Frontiers in
Education Conference, 2004, vol. 2, pp. F2C-F23, doi:
10.1109/FIE.2004.1408592.

[4] IEEE, SWEBOK V3.0, Guide to the Software Engineering Body of
Knowledge,http://www4.ncsu.edu/~tjmenzie/cs510/pdf/SWEBOKv3.
pdf, retrieved on Jan. 26, 2017.

[5] S. Koolmanojwong, B. Boehm, “Educating Software Engineers to
Become System Engineers”, Proc. IEEE-CS Conference on Software
Engineering Education and Training (CSEE&T’11), 2011, pp. 209-
2018, doi: 10.1109/CSEET.2011.5876089.

[6] R Leblanc, A. Sabel, T Hilburn, and A McGerrriek, “IEEE-CS/ACM
computing curricula - software engineering volume”, Proc. Frontiers
in Education Conference, Dec. 2003, vol. 3, pp. S3C_24-S3C_27,
doi: 10.1109/FIE.2003.1265988.

[7] Liem, I, et.al., “Reshaping Software Engineering Education towards
2020 Engineers”, Proc. IEEE 27th Conference on Software
Engineering Education and Training (CSEE&T14), 2014, pp. 171-
174, doi: 10.1109/CSEET.2014.6816797.

[8] K. Robinson, P. Ho, “Software Engineering or Soft Engineering?”,
Proc. IEEE-CS Conference on Software Engineering Education and
Training (CSEET&T’11), 2011, pp. 459-466, doi:
10.1109/CSEET.2011.5876125.

[9] TIDAB, Degree Programme in Computer Engineering, 2014,
https://www.kth.se/social/program/tidab/, retrieved on Jan. 28, 2017.

67

